GAAP. Genetic algorithm with auxiliary populations applied to continuous optimization problems
Material type:
Item type | Home library | Collection | Call number | URL | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
![]() |
Biblioteca de la Facultad de Informática | Biblioteca digital | A0295 (Browse shelf(Opens below)) | Link to resource | No corresponde |
Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
Genetic algorithms have been used successfully to solve continuous optimization problems. However, an early convergence to low-quality solutions is one of the most common difficulties encountered when using these strategies. In this paper, a method that combines multiple auxiliary populations with the main population of the algorithm is proposed. The role of the auxiliary populations is dual: to prevent or hinder the early convergence to local suboptimal solutions, and to provide a local search mechanism for a greater exploitation of the most promising regions within the search space.
International Conference on Information Technology Interfaces (34ª : 2012 jun. 25-28 : Cavtat, Croacia). Proceedings. IEEE, 2012, pp. 411-416