Modelling large-scale scientific data transfers
Material type:
Item type | Home library | Collection | Call number | URL | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
![]() |
Biblioteca de la Facultad de Informática | TES 21/44 (Browse shelf(Opens below)) | Available | DIF-05066 | ||||
![]() |
Biblioteca de la Facultad de Informática | Biblioteca digital | Link to resource | No corresponde | ||||
![]() |
Biblioteca de la Facultad de Informática | Biblioteca digital | Link to resource | No corresponde |
Browsing Biblioteca de la Facultad de Informática shelves Close shelf browser (Hides shelf browser)
Tesis (Doctorado en Ciencias Informáticas) - Universidad Nacional de La Plata. Facultad de Informática, 2021.
1 Introduction -- 1.1 Motivation -- 1.2 Research questions -- 1.3 Research outline -- 2 The distributed data management environment -- 2.1 The World LHC Computing Grid -- 2.2 The File Transfer Service -- 2.3 Rucio -- 2.3.1 Rucio Data IDentiers -- 2.3.2 Rucio Storage Elements -- 2.3.3 Replication rules and subscriptions -- 2.3.4 Replica management and transfers -- 3 Data selection and model metrics -- 3.1 Rucio data extraction and selection -- 3.1.1 Transfers and Deletions -- 3.1.2 FTS Server -- 3.1.3 TAPE activities -- 3.1.4 Failed transfers -- 3.1.5 Data extraction and treatment -- 3.2 Metric election -- 3.2.1 MSE and RMSE -- 3.2.2 MEA and MedAE -- 3.2.3 MSLE and RMSLE -- 3.2.4 Explained Variance and R2 Score -- 3.2.5 Mean Tweedie Deviance -- 3.2.6 MAPE and RE -- 3.2.7 FoGP -- 3.2.8 Metrics comparison experiment -- 4 Model of intra-rule Rule TTC extrapolation -- 4.1 Transfers per rule distribution -- 4.2 The α and α0 models -- 4.3 Evaluation of results -- 5 Model of Rule TTC based on time series analysis -- 5.1 Problem framing -- 5.2 The β models -- 5.3 The γ models -- 6 Model of Rule TTC based on deep neural networks -- 6.1 The δn Model -- 6.2 The δννn Model -- 6.3 Comparison of the models performance -- 7 Network time to predict Transfer TTC and Rule TTC -- 7.1 Network Time for a single transfer -- 7.2 Network Time as a Transfer TTC and Rule TTC estimator -- 7.3 Results -- 8 FTS Queue Time to predict Transfer TTC and Rule TTC -- 8.1 FTS queue modeling -- 8.2 Modeling the FTS queue from Rucio data -- 8.3 Using FTS Queue Time as a Transfer TTC and a Rule TTC -- predictor -- 9 Results and conclusion -- 9.1 Models summary -- 9.2 Model κ -- 9.3 Model α -- 9.4 Models β(t0, ρ) and β∗(t0, ρ) -- 9.5 Model γ(t0, ρ, λ, ψ, ω) -- 9.6 Models δ and δνν -- 9.7 Models based on individual transfers -- 9.8 Conclusion and nal remarks -- 10 Future work -- 10.1 Possible extensions to the δνν model -- 10.2 More complex auto-regressive models