Sistema de Archivos Paralelos con Aplicaciones de Machine Learning

By: Contributor(s): Material type: ArticleArticleDescription: 1 archivo (542,3 kB)Subject(s): Online resources: Summary: Se propone la investigación, análisis y evaluación del impacto de aplicaciones del tipo Machine Learning en un sistema de archivos paralelos, a nivel de rendimiento y uso de recursos. Para tal motivo se plantea el estudio del sistema de archivos paralelo BeeGFS, como infraestructura, y el uso de aplicaciones de Machine Learning como herramienta de benchmark para obtener los resultados necesarios y posterior análisis. Los sistemas de archivos paralelos nos permiten incrementar el rendimiento de los "File Servers" que requieren de mayor capacidad de respuesta a operaciones de lectura y escritura por accesos recurrentes y concurrentes a datos, donde los sistemas de archivos convencionales como "Network File System" no pueden satisfacer esta capacidad, entre otras grandes ventajas.
Star ratings
    Average rating: 0.0 (0 votes)

Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)

Se propone la investigación, análisis y evaluación del impacto de aplicaciones del tipo Machine Learning en un sistema de archivos paralelos, a nivel de rendimiento y uso de recursos. Para tal motivo se plantea el estudio del sistema de archivos paralelo BeeGFS, como infraestructura, y el uso de aplicaciones de Machine Learning como herramienta de benchmark para obtener los resultados necesarios y posterior análisis. Los sistemas de archivos paralelos nos permiten incrementar el rendimiento de los "File Servers" que requieren de mayor capacidad de respuesta a operaciones de lectura y escritura por accesos recurrentes y concurrentes a datos, donde los sistemas de archivos convencionales como "Network File System" no pueden satisfacer esta capacidad, entre otras grandes ventajas.

Congreso Argentino de Ciencias de la Computación (28vo : 2022 : La Rioja, Argentina)