000 01529naa a2200229 a 4500
003 AR-LpUFIB
005 20250311170444.0
008 230201s2014 xx r 000 0 eng d
024 8 _aDIF-M7558
_b7778
_zDIF006834
040 _aAR-LpUFIB
_bspa
_cAR-LpUFIB
100 1 _aAquino, Germán
245 1 0 _aKeyword extracting using auto-associative neural networks
300 _a1 archivo (436,3 kB)
500 _aFormato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
520 _aThe large amount of textual information digitally available today gives rise to the need for effective means of indexing, searching and retrieving this information. Keywords are used to describe briefly and precisely the contents of a textual document. In this paper we present a new algorithm for keyword extraction. Its main goal is to extract keywords from text documents written in Spanish quickly and without requiring a large training set. This goal was achieved using auto-associative neural networks, also known as autoencoders, trained using only the terms designated as keywords in the training set, so that these networks can learn the features characterizing the important terms in a document.
534 _aCongreso Argentino de Ciencias de la Computación (20mo : 2014 : Buenos Aires, Argentina)
650 4 _aREDES NEURONALES
653 _aminería de textos
700 1 _aHasperué, Waldo
700 1 _aLanzarini, Laura Cristina
942 _cCP
999 _c56610
_d56610